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The Pseudomonas syringae species complex (PSSC) consists of many 
closely related plant pathogens (Sarkar & Guttman, 2004). With host 
ranges and symptomology that can overlap, accurate identification 
of isolates can be difficult (Morris et al., 2019). Aside from whole-
genome sequencing, which is costly and often impractical for routine 
identification, marker gene sequencing is the most effective method 

for specific and subspecific classification of unknown PSSC isolates 
(Berge et al., 2014; Borschinger et al., 2016; Guilbaud et al., 2016). 
This method has been used to aid in the identification of new patho-
genic strains and species within the species complex, and to detect 
known pathogens infecting novel hosts (Dutta et al., 2018; Keshtkar 
et al.,  2016; Moretti et al.,  2012), highlighting the importance of 
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Abstract
The Pseudomonas syringae species complex is composed of several closely related 
species of bacterial plant pathogens. Here, we used in silico methods to assess 16 
PCR primer sets designed for broad identification of isolates throughout the species 
complex. We evaluated their in silico amplification rate in 2161 publicly available ge-
nomes, the correlation between pairwise amplicon sequence distance and whole ge-
nome average nucleotide identity, and trained naive Bayes classification models to 
quantify classification resolution. Furthermore, we show the potential for using single 
amplicon sequence data to predict type III effector protein repertoires, which are 
important determinants of host specificity and range.
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amplicon sequencing for broadening our understanding of the spe-
cies complex. However, although there have been many proposed 
PCR primer sets designed to amplify broadly within the species com-
plex (Hwang et al., 2005; Sarkar & Guttman, 2004; Yan et al., 2008), 
there are open questions about the relative performance of each. 
Specifically, it is not clear if all primers allow for reliable amplifica-
tion for all phylogroups in the species complex, or which primer sets 
allow for the greatest classification resolution. Furthermore, while a 
primary goal of pathogen identification is often to predict the patho-
genic potential of the unknown isolate, it is not known if the classifi-
cation resolution obtained by any of the currently published primers 
is sufficient to predict the genomic features associated with host 
range and virulence.

While most of the primer sets evaluated in this study were orig-
inally designed for use with multilocus sequence typing (Sarkar & 
Guttman,  2004; Yan et al.,  2008), there has been continuous in-
terest in classifying isolates with a single marker gene. In this re-
gard, recombination rates and phylogenetic congruence have been 
used as metrics to suggest that genes such as citrate synthase (CTS) 
(Berge et al., 2014) and RNA polymerase σ factor (rpoD) (Parkinson 
et al., 2011) can be used by themselves to accurately place unknown 
PSSC isolates into phylogroups. An in-depth comparison of these 
primer sets as tools for classification has not been conducted, how-
ever, leaving it an open question as to which performs best.

Often, an implicit goal of bacterial isolate identification is to gain 
some insight into its functionality or ecological significance for the 
environment it was isolated from. In this vein, assuming a phyloge-
netic placement with sufficient resolution, prediction of an isolate's 
gene content can be made, providing insight into functional capac-
ity. This concept has been demonstrated with PICRUSt2, in which 
improved functional predictions were achieved over PICRUSt1 
solely from increased resolution in genome prediction (Douglas 
et al., 2020). As PCR primer sets designed specifically for PSSC are 
used because they offer greater phylogenetic resolution over those 
targeting 16S rRNA genes (the marker gene used by PICRUSt2), we 
hypothesized that specific genes known to affect host range and 
virulence could be predicted in genomes based solely on amplicon 
sequences derived from commonly used PCR primer sets.

In PSSC, pathogenicity is determined in large part by the type III 
effector proteins (T3Es) carried by the pathogen (Hulin et al., 2018) 
and therefore predicting T3E repertoires could provide valuable in-
formation about the potential host range and specialization of an un-
known isolate. While many pathogens in the species complex carry 
30–40 T3Es, only effectors avrE, hopM, and hopAA are considered 
part of the core PSSC genome of PSSC and are thought to confer 
general virulence to plants (Dillon et al., 2019). The other T3Es play a 
role in host adaptation and are more variable in the species complex, 
suggesting that if there is a taxonomic signature associated with 
their presence, an infraspecific classification is needed to accurately 
predict it. It is currently not known what phylogenetic resolution is 
needed to accurately predict T3E repertoires or whether any pub-
lished primer sets might allow high enough resolution to meet this 
threshold.

In the present study, we performed in silico tests to assess the 
performance of 16 previously published PCR primer sets, targeting 
eight marker genes, against 2161 PSSC genomes. The metrics used 
for assessment of phylogenetic classification were amplification 
rate, congruence of pairwise amplicon distance with average nu-
cleotide identity (ANI), and performance of naive Bayes classifiers 
trained on in silico amplicon data. We also investigated the poten-
tial for functional prediction from amplicon data by analysing the 
Jaccard similarity of T3E repertoires at the level of phylogenetic 
resolution achieved by each classifier and show that isolates not 
included in the training dataset can be accurately placed above phy-
logroup level and prediction of both T3E repertoire size and con-
tent is often possible, with presence/absence of 77 T3E subfamilies 
being correctly predicted with a median accuracy of 93% among 
113 genomes in a test dataset consisting of recently sequenced 
PSSC genomes.

Overall, we found that some published primer sets may have 
substantial blind spots in the lineages they can amplify. However, 
many primers tested could both amplify broadly throughout the spe-
cies complex and be used to classify isolates beyond the phylogroup 
level, allowing accurate prediction of the T3Es carried by unknown 
PSSC isolates. Our results suggest that for the highest classification 
resolution throughout the species complex, resulting in the most 
consistent T3E repertoire prediction accuracy, primer sets targeting 
the genes gapA, gyrB (Hwang et al., 2005), and PGI (Yan et al., 2008) 
should be considered as the optimal primer sets.

A total of 2467 genomes labelled as belonging to the Pseudomonas 
syringae group were obtained from the RefSeq database from the 
National Center for Biotechnology Information in November 2021. 
Genomes were checked for completeness and assembly quality 
with BUSCO v. 5.3.2 using default settings and the pseudomonad-
ales_odb10 lineage. Genomes scoring >99 made up the final dataset 
used for assessing primers. As the majority of genomes used were 
not assigned to a phylogroup, phylogroups were assigned based on 
ANI with phylogroup reference genomes produced by Berge et al. 
(2014). While Berge et al. suggest taking a simple nearest-neighbour 
approach to assigning the phylogroup, 173 genomes within our data-
set shared <95% ANI with any phylogroup reference genome, indi-
cating that they were either misclassified at the time of depositing 
into GenBank as belonging to PSSC, or that they might represent 
new phylogroups. As a result, these genomes were left unassigned 
to a phylogroup. Eventually a curated set of 2161 genomes was used, 
with 1988 assigned to a phylogroup (Table S1 contains the accession 
numbers of these genomes and assigned phylogroups, along with 
ANI clusters and the T3E gene content described below).

In silico PCR was performed with ‘in_silico_PCR’ (Ozer,  2022) 
allowing for one mismatch per primer. The identity of amplicons 
was confirmed by visually inspecting multiple sequence alignments 
performed with MAFFT, using Geneious v. 2019.1.3 (https://www.
genei​ous.com). The amplification rate reported is the percentage of 
the 2161 genomes that resulted in successful amplification of the 
target gene fragment. The primers included in this study are given 
in Table 1.
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Pairwise ANI values for all genomes were computed with 
fastANI v. 1.33 (Jain et al.,  2018). For each primer set with am-
plification rate >50%, amplicon sequences were aligned using 
MAFFT v. 7 (Katoh & Standley,  2013) with the options ‘global-
pair’ and a ‘maxiterate’ of 1000. For amplicon sequence similarity, 
pairwise hamming distances for the aligned sequences were then 
computed with the ‘DistanceMatrix’ function in the R package 
DECIPHER (Wright,  2015). To quantify the correlation between 
amplicon sequence distances and ANI of the source genomes, the 
mean squared deviation of amplicon sequence similarity from ANI 
was computed as the sum of squared distances between the two 
values for each genome pair. As ‘DistanceMatrix’ reports distance 
in the range of 0–1, ANI values were normalized to the same range 
by dividing by 100.

Using QIIME2's v. 2022.2 feature-classifier (Bolyen et al., 2019), 
naive Bayes classifiers were trained on the unaligned in silico ampl-
icon sequences generated above. Primer sequences were left un-
trimmed from amplicons. Classification models require taxonomic 
descriptions of known genomes for training, but nomenclature in 
PSSC is largely inconsistent (Gomila et al., 2017), which can signifi-
cantly reduce the predictive power of classification models. We 
therefore implemented instead a strict hierarchical taxonomy based 
on ANI, generated by the clustering algorithm used by LINbase (Tian 
et al., 2020). Briefly, a randomly selected genome in the set is as-
signed to clusters representing 20 ANI values from 80% to 99%, 
each given a numeric signature of ‘0’. All other genomes are iter-
atively assigned to clusters based on the closest already-assigned 
genome, and given the same numeric signature for all ANI values up 
to the point that the two genomes differ, wherein the numeric signa-
ture is iterated (e.g., if genome #2 shares 97.5% ANI with genome #1, 
genome #2 will be assigned to cluster ‘0’ along with genome #1 for 
all ANI values except 98%, where it will be assigned a numeric sig-
nature of ‘1’). The resulting taxonomy file consists of 20 taxonomic 
levels representing ANI values from 80% to 99% (Table S1).

Reference sequences for T3E subfamilies included in the P. syrin-
gae type III effector compendium (PsyTEC) (Laflamme et al., 2020) 
were aligned using MAFFT with default settings, and the alignments 
input into the HMMER v. 3.1b2 (hmmer.org) function HMMbuild to 
generate HMM profiles. Using HMMsearch, these 77 HMMs were 
run on the set of 2161 genomes and an e-value of 10−20 was used as 
the threshold for considering a subfamily to be present in a genome.

As all primers used in this study were designed to work broadly 
on strains within the species complex, we first tested the amplifi-
cation rate of each primer set. Surprisingly, when tested on a com-
prehensive set of genomes representing the full known diversity of 
PSSC, 7/16 primer sets tested had an amplification rate of <50% 
(Figure 1a). For the remaining nine primers, performance was sub-
stantially better, with amplification rates ranging from 91.37% 
(rpoD-P) to 100% (rpoD-H). These large differences in amplification 
rate are probably due to the significant degeneracy built into the 
best performing primer sets (Tables  1 and S2) and highlights the 
importance of considering the known diversity of PSSC when de-
signing primers. It is worth noting, however, that the low in silico 

amplification rates seen here do not necessarily translate to low 
amplification rates under laboratory conditions, as only a single mis-
match was allowed per primer in our tests. In practice, successful 
amplification with two or more mismatches is not unreasonable to 
expect. Nonetheless, as primer sets with fewer mismatches are gen-
erally preferred, and the majority of the primer sets exhibiting low 
amplification rates targeted genes already targeted by better per-
forming primer sets, primer sets with amplification rates <50% were 
removed from any further tests.

When choosing a marker gene, or region of a marker gene, to 
use for identification purposes, an important consideration is the 
level of conservation found within the region, as regions that are 
too conserved result in reduced taxonomic resolution. To investigate 
the amount of conservation found within the amplicons generated 
by each primer set, we compared pairwise amplicon similarity (rep-
resented by their Jaccard index) with the ANI of the genomes from 
which the amplicons were derived (Figure 1b). Of the primers tested, 
amplicons from CTS showed the highest level of conservation, in-
dicating they might not provide the best resolution when used for 
classification contrary to previous suggestions (Berge et al., 2014). 
On the other hand, amplicons generated by PGI-Y, targeting phos-
phoglucose isomerase (PGI), exhibited a mean squared deviation 
from ANI almost 10 times lower than any primer targeting CTS 
(Figure 1b), indicating a very good congruence between the diversity 
at this locus and the one retrieved at the genome level.

To compare the performance of primers in classifying individual 
strains throughout PSSC, classification models were trained on am-
plicons generated by each primer set and then used to classify each 
strain in the training set. The relative performance of the classifica-
tion models mirrored the amount of conservation observed above 
(Figure 1b), although the practical differences in classification reso-
lution were minimal (Table 2). Remarkably, every primer set allowed 
for classification beyond phylogroup level, with the mean ANI of 
predicted clades ranging from 97.22% (CTS-H, CTS-Y, and CTS-SG) 
to 97.93% (PGI-Y). Surprisingly, while the CTS gene has been sug-
gested to be a particularly informative marker gene for PSSC (Berge 
et al., 2014), the three primers targeting this gene performed slightly 
below the other primers tested. Although the mean performance of 
classification models suggests PGI-Y as the best primer set, it does 
not consider biases in the representation of each phylogroup in our 
dataset, and so we sought to analyse any discrepancies in primer 
performance among phylogroups (Figure 1c).

For strains belonging to phylogroup 1, all primers performed 
well, amplifying every strain tested and classifying most to 98% ANI 
(Figure 1c). An exception to the strong performance can be seen for 
two subclades which CTS-Y and CTS-SG were only able to classify 
at 95%. Overall, the best performing primers for phylogroup 1 were 
gapA-H and gyrB-H.

In phylogroup 2, performance was more variable. Both rpoD-P 
and rpoD-H were unable to classify strains in a well-sampled clade 
of phylogroup 2b above 95% ANI, and gyrB-Y was unable to amplify 
several strains within phylogroup 2d. As seen in phylogroup 1, the 
best performing primers for phylogroup 2 were gapA-H and gyrB-H.
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F I G U R E  1  Results of amplicon-based classification tests. (a) Proportion of genomes with successful amplification, allowing one mismatch 
per primer. Primer sets producing amplicons in more than 90% of genomes are highlighted in blue. Primer sets in grey were omitted from 
further analysis. (b) Generalized additive models summarizing the relationship between pairwise amplicon similarity and whole-genome 
average nucleotide identity (ANI). Mean squared deviation (MSD) of amplicon similarity from ANI is shown in the lower left corner and the 
dashed grey line represents MSD = 0. (c) Core genome phylogeny for all genomes used in this study. Innermost ring annotates phylogroups, 
where each outer ring represents the classification resolution obtained when amplicon sequences from each genome were identified with a 
Bayes classifier. White rectangles represent genomes from which in silico amplification was unsuccessful.
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Phylogroup 3 strains were successfully amplified by every 
primer, with the exception of four strains that gyrB-H was unable to 
amplify from. Overall, PGI-Y and gyrB-Y were the best-performing 
primers for strains in phylogroup 3.

All primers performed equally well for phylogroup 4 strains, clas-
sifying to 98% ANI. gyrB-Y, however, failed to amplify from every 
strain in this phylogroup.

Our dataset contained only nine phylogroup 5 strains, but every 
primer set was able to amplify and classify each one to 98%–99% 
ANI.

As with phylogroup 4, gyrB-Y was the only primer set unable to 
amplify and classify to 97%–99% every strain in phylogroup 6.

Within phylogroup 7, PGI-Y performed the best, classifying 89% 
(1189/1331) of strains to 98% ANI, while all other primers generally 
classified strains in this phylogroup to 97%.

Phylogroups 9, 10, 11, and 13 were under-represented in the 
dataset and so conclusions are difficult to draw about primer per-
formance. Additionally, there were several strains not assigned to 
a phylogroup in our dataset. Among these strains, rpoD-H and ga-
pA-H exhibited the highest amplification rates and classification res-
olution ranging from 97% to 99% ANI.

No single primer set universally outperformed the rest, and as 
such the suspected identity of an unknown isolate should be consid-
ered when choosing the appropriate set of primers to use for classi-
fication. However, PGI-Y, gapA-H, and gyrB-H generally performed 

TA B L E  2  Summary of classification test results.

Primer set

Mean average 
nucleotide identity 
resolution SD

gyrB-H 97.5970987 0.5956094

CTS-SG 97.2226044 0.5965339

CTS-Y 97.2277597 0.6516167

gapA-H 97.5547818 0.5947916

rpoD-P 97.6722441 0.6654118

PGI-Y 97.9319664 0.4392588

gyrB-Y 97.5712166 0.5701288

rpoD-H 97.6307265 0.6961651

CTS-H 97.2234903 0.8056386

F I G U R E  2  Distribution of type III effector proteins throughout the Pseudomonas syringae species complex. The heatmap shows the 
frequency of each type III effector subfamily, with each row as a cluster of genomes sharing 98% average nucleotide identity (ANI). Black 
outlines indicate the phylogroups found in each row. The cladogram on the left represents ANI-based clusters of genomes from 80% to 
98% ANI and is coloured by the mean Jaccard index of genome pairs found in each branch. Red branches indicate singletons for which the 
Jaccard index could not be calculated.
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well throughout the species complex and should be considered the 
default choices for the highest classification resolution.

As classification based on single amplicon sequences resulted 
in fairly high genomic resolution (97%–98% ANI), we sought to 
explore the possibility of predicting the gene content of a target 
strain using the gene content of predicted relatives. As T3Es are 
important determinants of virulence in PSSC (Dillon et al., 2019; 
Lindeberg et al., 2009), we focused here on T3Es by first assess-
ing the prevalence of each T3E subfamily within genomic clusters 
sharing at least 98% ANI (Figure 2). While there were several clus-
ters that contained only a single genome (i.e., no genome in the 
dataset shared more than 98% ANI with them), even among better 

represented clusters, there was considerable similarity in T3E rep-
ertoires. This suggested that unknown isolates placed into these 
clusters should exhibit a predictable T3E repertoire. Perhaps not 
surprisingly, clusters representing phylogroups that contain most 
of the agricultural pathogens within PSSC exhibit many more 
T3Es as well as a greater diversity in repertoires between strains, 
indicated by the average Jaccard index within a given cluster 
(Figure 2). When the T3E repertoires of the 2161 genomes were 
compared against the consensus repertoires (defined by taking 
the most common state of each T3E subfamily, absent or pres-
ent) of their 98% ANI clusters, 75.3%–100% of actual T3E states 
recapitulated the intracluster consensus (Figure  3). It should be 

F I G U R E  3  Similarity between individual type III effector repertoires and the consensus repertoire at the 98% average nucleotide identity 
level. The height of the bar represents percentage agreement, scaled from 70% to 100%. Genomes with no bar represent singletons at the 
98% level, and thus no consensus repertoire could be calculated. Innermost ring colours designate phylogroups, as seen in Figure 1.
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noted that the T3E repertoires in our analysis were defined solely 
on the presence or absence of gene subfamilies, and that even 
single amino acid changes within effector protein sequences can 
alter host compatibility. Therefore, the T3E repertoire predictions 
presented here should be considered a useful starting point for 
generating hypotheses regarding the host range of unknown iso-
lates, and not any prediction of host range in itself.

To further test the feasibility of T3E repertoire prediction, 113 
genomes not included in our initial training set underwent in silico 
PCR for the nine primers tested above, classified using the trained 
naive Bayes classifiers and screened for T3Es. Actual T3E repertoires 
were then compared to the average repertoire within the predicted 
LIN group of the unknown strain and prediction accuracy for the rep-
ertoire was assessed. While not every primer set was able to amplify 

F I G U R E  4  Classification based on single marker genes allows for accurate prediction of type III effector (T3E) repertoires. (a) Density 
plots for classification resolution for each primer set. The number of successful in silico amplifications from each primer set, out of 113, is 
indicated in parentheses. (b) Density plots for the T3E repertoire prediction accuracy for each primer set. Prediction accuracy is defined 
as the percentage of 77 effector protein subfamilies whose absence or presence in a genome was predicted correctly. (c) Boxplots for T3E 
repertoire prediction accuracy by phylogroup of the classified genome. Each dot is a single genome whose T3E repertoire was predicted 
based on classification with primer set gyrB-H. (d) Summary of T3E subfamily predictions in test genomes classified to at least 98% average 
nucleotide identity, sorted from least to most correct predictions.
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from every genome (Figure  4a), amplification rates were generally 
good at 92.9%–100%. Classification of genomes from amplicon se-
quences resulted in the placement of most strains to 98% ANI or 
greater (Figure 4a). The overall accuracies of T3E repertoire predic-
tions for all primers were nearly identical; each primer set allowed 
for a median prediction accuracy of 93.51% (Figure 4b) but with in-
dividual prediction accuracies ranging widely from 64.9% to 100%. 
As some phylogroups are known to contain a greater number and 
diversity of effector proteins, we asked whether prediction accuracy 
varied significantly by phylogroup and found a strong correlation be-
tween phylogroup and prediction accuracy (Figure 4c). We also found 
that some T3Es were particularly difficult to predict (Figure 4d) using 
our method. For example, for hopA1, a predicted absence of the sub-
family was a false negative more often than not. Likewise, avrE1 was 
predicted to be present 100% of the time in our test genomes, re-
sulting in false positives in 27% of genomes. These findings strongly 
suggest that, at a minimum, any implementation of gene content pre-
diction based on classification from marker gene sequences needs to 
consider the appropriate testing errors to be of practical use.

As more PSSC genomes are sequenced and deposited in public 
repositories, it is likely that our ability to predict T3E repertoires, 
as well as the presence of other important virulence factors, from 
amplicon sequencing will improve. This, coupled with research that 
indicates that host range can in part be inferred from virulence fac-
tors such as T3Es (Baltrus et al., 2012; Ferrante et al., 2009; Hulin 
et al., 2018) suggests that amplicon sequencing remains a powerful 
method for studying disease dynamics, predicting pathogen spread, 
and rapidly detecting problematic PSSC strains.

In this study we set out to compare PCR primer sets designed to 
amplify broadly within the PSSC. We found that there were signifi-
cant differences in amplification rates that raise questions about the 
utility of some commonly used primers. However, we also found that 
classification resolution was relatively consistent between the prim-
ers tested, allowing placement of unknown genomes into clusters at 
the 98% ANI level.

The high resolution obtained from our classification models led 
us to investigate the potential of single amplicon sequences for the 
prediction of T3E protein subfamilies. We showed that with median 
accuracy of 93%, we were able to correctly predict the effector 
repertoires of 113 recently sequenced PSSC strains, although the 
accuracy was dependent on phylogroup. These results highlight the 
importance of continued isolation and sequencing of plant patho-
gens as a source of data to be leveraged in the future for more effi-
cient and informative screening assays. Based on our findings here, 
we currently recommend the primer sets gapA-H, gyrB-H, and PGI-Y 
for single amplicon sequence typing of isolated PSSC strains.
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